Demographic values and socio-demographic profile of the VKontakte users: is there a connection?
https://doi.org/10.55959/MSU0130-0105-6-58-3-8
Abstract
The main purpose of the study is to identify whether there is a connection between different demographic values, as well as socio-demographic characteristics of social network VKontakte users. Based on a large data set of user comments of two types — parental and childfree groups, — the paper identifies the links between different types of demographic values — positive or negative attitudes towards parenthood, family creation, having children, attitude towards healthy lifestyle, as well as between values and socio-demographic characteristics such as gender, age, marital status. Drawing on a logit analysis, the authors construct socio-demographic profiles of so-called “pronatalists” (parental groups) and “anti-natalists” (childfree groups) in Russia and prove the correlation between different types of values. For example, positive attitudes towards parenthood, childbearing, and family creation (reproductive and family values) are associated with negative attitudes towards smoking and alcohol (positive vital values). The marital status is also associated with these positive values (which indirectly indicates a connection with matrimonial values). A connection was found both between different types of demographic values of the social network users of selected demographic groups, and a connection between the socio-demographic characteristics of users and their values. For example, women and older people (in some model specifications) are more prone to family values. Additionally, the study confirms the quality of the choice of demographic groups in social network by names and declared values— a connection is traced between belonging to pronatalist or antinatalist groups and value attitudes about life priorities (family or leisure and self-development).
Keywords
About the Authors
I. E. KalabikhinaRussian Federation
Moscow
Z. G. Kazbekova
Russian Federation
Moscow
E. P. Banin
Russian Federation
Moscow
G. A. Klimenko
Russian Federation
Moscow
References
1. Arkhangelsky, V. N. (2006). Ethnic differentiation of fertility and reproductive behavior in Russia. In book. V. N. Arkhangelsky (ed.) Fertility factors. Moscow: TEIS, 120–126.
2. Brazevich, S. S., Safronova, J. S., Brazevich, D. S., & Matyukha, D. V. (2019). Study of the interests of young people through the thematic repertoire of communication in the student environment: the case of the social network “VKontakte”.Monitoring Public Opinion: Economic and Social Changes, 1(149), 193–211. https://doi.org/10.14515/monitoring.2019.1.09
3. Brodovskaya, E. V., Dombrovskaya, A. Yu., & Sinyakov, A. V. (2016). Strategies for using social networks in modern Russia: results of multidimensional scaling. Monitoring Public Opinion: Economic and Social Changes, 1(131), 283–296. https://doi.org/10.14515/monitoring.2016.1.13
4. Zhuravlev, A. L., & Kitova, D. A. (2020). Psychological features of the attitude towards children of users of the social network Twitter. Institute of Psychology of the Russian Academy of Sciences. Social and Economic Psychology, 5(1), 33–72.
5. Zabokritskaya, L. D., Khlebnikov, N. A., Oreshkina, T. A., & Komotsky, E. I. (2020). Opportunities to study the values of young people through the profile of the social network “VKontakte”.Monitoring public opinion: economic and social change, 2(156), 148–167. https://doi.org/10.14515/monitoring.2020.2.692
6. Kalabikhina, I. E., Lukashevich, N. V., Banin, E. P., Alibaeva, K. V., & Rebrei, S. M. (2021). Automatic extraction of opinions of users of social networks on reproductive behavior. Software Systems: Theory and Applications, 4(51), 33–63. https://doi.org/10.25209/2079-3316-2021-12-4-33-63
7. Kalabikhina, I. E., Lukashevich, N. V., Banin, E. P., Alibaeva, K. V., & Rebrei, S. M. (2021). Automatic analysis of the reproductive values of VKontakte users. Intelligent systems. Theory and Applications, 26(1), 90–96.
8. Karpova, V. M. (2019). Features of intergenerational transmission of family values. Bulletin of Moscow University. Series 18. Sociology and Political Science, 25(3), 117–139. https://doi.org/10.24290/1029-3736-2019-25-3-117–139
9. Kitova, D. A., & Kitov, M. A. (2020). The attitude of users of the social network Twitter to children: machine analysis of the emotional background of messages. Yaroslavl Pedagogical Bulletin, 3(114), 134–141. https://doi.org/10.20323/1813-145X-2020-3-114-134-141
10. Tarasova, S. I., Annikova, L. V., & Bespalova, D. A. (2014). Value attitudes of modern youth in virtual reality (on the example of texts of the social network vkontakte.ru). Actual philosophical and methodological problems of modern scientific knowledge, 173–177.
11. Khafizova, L. A. (2014). Birth rate in Russia: state and trends. Bulletin of the Russian State University for the Humanities. Series “Philosophy. Sociology. Art Criticism”, 4(126), 156–162.
12. Abosedra, S., Laopodis, N. T., & Fakih, A. (2021). Dynamics and asymmetries between consumer sentiment and consumption in pre-and during-COVID-19 time: Evidence from the US. The Journal of Economic Asymmetries, 24, e00227. https://doi.org/10.1016/j.jeca.2021.e00227
13. Becker, G. S., & Lewis, H. G. (1973). On the interaction between the quantity and quality of children. Journal of political Economy, 81(2, Part 2), 279–288. https://doi.org/10.1086/260166
14. Boer, M., Stevens, G. W., Finkenauer, C., Koning, I. M., & van den Eijnden, R. J. (2022). Validation of the social media disorder scale in adolescents: findings from a large-scale nationally representative sample. Assessment, 29(8), 1658–1675. https://doi.org/10.1177/10731911211027232
15. Cesare, N., Oladeji, O., Ferryman, K., Wij aya, D., Hendricks-Muñoz, K. D., Ward, A., & Nsoesie, E. O. (2020). Discussions of miscarriage and preterm births on Twitter. Paediatric and perinatal epidemiology, 34(5), 544–552. https://doi.org/10.1111/ppe.12622
16. Duggan, M. (2015). Mobile messaging and social media 2015. https://www.pewresearch.org/internet/2015/08/19/mobile-messaging-and-social-media-2015/
17. Dutton, W. H., & Reisdorf, B. C. (2019). Cultural divides and digital inequalities: attitudes shaping Internet and social media divides. Information, communication & society, 22(1), 18–38. https://doi.org/10.1080/1369118X.2017.1353640
18. Glandt, K., Khanal, S., Li, Y., Caragea, D., & Caragea, C. (2021). Stance Detection in COVID-19 Tweets.Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint 46 Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 1596–1611.
19. Graells-Garrido, E., Baeza-Yates, R., & Lalmas, M. (2019). How representative is an abortion debate on Twitter? In Proceedings of the 10th ACM Conference on Web Science, 133–134. https://doi.org/10.1145/3292522.3326057
20. Greenwood, S., Perrin, A., & Duggan, M. (2016). Social media update 2016. Pew Research Center, 11(2), 1–18.
21. Hanushek, E. A., & Kimko, D. D. (2000). Schooling, labor-force quality, and the growth of nations. American Economic Review, 90(5), 1184–1208. https://doi.org/10.1257/aer.90.5.1184
22. Hasan, K. S., & Ng, V. (2013). Stance Classification of Ideological Debates: Data, Models, Features, and Constraints. Proc. Sixth Int. Jt. Conf. Nat. Lang. Process, 1348–1356.
23. Kalabikhina, I. E., & Banin, E. P. (2021). Database «Childfree (antinatalist) communities in the social network VKontakte». Population and Economics, 5(2), 92–96. https://doi.org/10.3897/popecon.5.e70786
24. Kalabikhina, I. E., & Banin, E. P. (2020). Database «Pro-family (pronatalist) communities in the social network VKontakte». Population and Economics, 4(3), 98–130. https://doi.org/10.3897/popecon.4.e60915
25. Kalabikhina, I. E., Banin, E. P., Abduselimova, I. A., Klimenko, G. A., & Kolotusha, A. V. (2021). The measurement of demographic temperature using the sentiment analysis of data from the social network VKontakte. Mathematics, 9(9), 987. https://doi.org/10.3390/math9090987
26. Kalabikhina, I. E., Kazbekova, Z. G., Klimenko G. A., & Banin, E. P. (2022). Socio-demographic portrait and demographic values of pro-natalists and anti-natalists in Russia: assessment based on data from the social network VKontakte (1.0) (Data set). Zenodo. https://doi.org/10.5281/zenodo.7325117
27. LaRoche, K. J., Jozkowski, K. N., Crawford, B. L., & Haus, K. R. (2021). Attitudes of US adults toward using telemedicine to prescribe medication abortion during COVID-19: A mixed methods study. Contraception, 104(1), 104–110. https://doi.org/10.1016/j.contraception.2021.04.001
28. Lillard, L. A., & Waite, L. J. (1993). A joint model of marital childbearing and marital disruption. Demography, 30(4), 653–681. https://doi.org/10.2307/2061812
29. Liu, S., & Liu, J. (2021). Public attitudes toward COVID-19 vaccines on English-language Twitter: A sentiment analysis. Vaccine, 39(39), 5499–5505. https://doi.org/10.1016/j.vaccine.2021.08.058
30. Malik, M., Lamba, H., Nakos, C., & Pfeffer, J. (2015). Population bias in geotagged tweets. In Proceedings of the international AAAI conference on web and social media, 9(4), 18–27. https://doi.org/10.1609/icwsm.v9i4.14688
31. Mellon, J., & Prosser, C. (2017). Twitter and Facebook are not representative of the general population: Political attitudes and demographics of British social media users. Research & Politics, 4(3). https://doi.org/10.1177/2053168017720008
32. Miao, L., Last, M., & Litvak, M. (2020). Twitter Data Augmentation for Monitoring Public Opinion on COVID-19 Intervention Measures. In Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020. https://doi.org/10.18653/v1/2020.nlpcovid19-2.19
33. Miller, W. B. (1994). The relationship between childbearing motivations and attitude toward abortion among married men and women. Family Planning Perspectives, 165–168. https://doi.org/10.2307/2136241
34. Mislove, A., Lehmann, S., Ahn, Y. Y., Onnela, J. P., & Rosenquist, J. (2011). Understanding the demographics of Twitter users. In Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 554–557. https://doi.org/10.1609/icwsm.v5i1.14168
35. Moor, N., & Komter, A. (2012). The impact of family structure and disruption on intergenerational emotional exchange in Eastern Europe. European Journal of Ageing, 9(2), 155–167. https://doi.org/10.1007/s10433-011-0207-3
36. Ntontis, E., & Hopkins, N. (2018). Framing a «social problem»: Emotion in anti-abortion activists’ depiction of the abortion debate. Br. J. Soc. Psychol. John Wiley and Sons Ltd., 57(3), 666–683. https://doi.org/10.1111/bjso.12249
37. Oentaryo, R. J., Murdopo, A., Prasetyo, P. K., & Lim, E. P. (2016). On profiling bots in social media. International conference on social informatics, 92–109. Springer, Cham. https://doi.org/10.1007/978-3-319-47880-7
38. Roldán-Robles, P. R., Umaquinga-Criollo, A. C., García-Santillán, J. A., Herrera-Granda, I. D., & García-Santillán, I. D. (2019). A conceptual architecture for content analysis about abortion using the Twitter platform. Revista Ibérica de Sistemas e Tecnologias de Informaçao, (E22), 363–374.
39. Seltzer, J. A., & Bianchi, S. M. (2013). Demographic change and parent-child relationships in adulthood. Annual review of sociology, 39, 275–290. https://doi.org/10.1146/annurev-soc-071312-145602
40. Sharma, E., Saha, K., Ernala, S. K., Ghoshal, S., & De Choudhury, M. (2017, October). Analyzing ideological discourse on social media: A case study of the abortion debate. In Proceedings of the 2017 international conference of the computational social science society of the Americas, 1–8. https://doi.org/10.1145/3145574.3145577
41. Startseva, N., Khlopotov, M. V., & Ivanov, S. E. (2017). Analysis of the audience of childfree communities in social network «VKontakte». In Proceedings of the Internationsl Conference on Electronic Governance and Open Society: Challenges in Eurasia, 107–112. https://doi.org/10.1145/3129757.3129776
42. Steele, F., Kallis, C., Goldstein, H., & Joshi, H. (2005). The relationship between childbearing and transitions from marriage and cohabitation in Britain. Demography, 42(4), 647–673. https://doi.org/10.1353/dem.2005.0038
43. Takac, L., & Zabovsky, M. (2012). Data analysis in public social networks. InInternational scientific conference and international workshop present day trends of innovations, 1(6).
44. Thorpe Huerta, D., Hawkins, J. B., Brownstein, J. S., & Hswen, Y. (2021). Exploring discussions of health and risk and public sentiment in Massachusetts during COVID-19 pandemic mandate implementation: A Twitter analysis. SSM-Popul. Heal, 15. https://doi.org/10.1016/j.ssmph.2021.100851
45. Vychegzhanin, S. V., & Kotelnikov, E. V. (2019). Stance Detection Based on Ensembles of Classifiers. Program. Comput. Softw. Pleiades Publishing, 45(5), 228–240. https://doi.org/10.1134/S0361768819050074
46. Wang, G. Z., & Buffalo, M. D. (2004). Social and cultural determinants of attitudes toward abortion: A test of Reiss’ hypotheses. The Social Science Journal, 41(1), 93–105. https://doi.org/10.1016/j.soscij.2003.10.008
47. Wojcik, S., Messing, S., Smith, A. W., Rainie, L., & Hitlin, P. (2018). Bots in the Twittersphere. Pew Research Center.
48. Yeung, W. J. J., & Hu, S. (2016). Paradox in marriage values and behavior in contemporary China. Chinese Journal of Sociology, 2(3), 447–476. https://doi.org/10.1177/2057150X16659019
49. Yucel, D. (2015). What predicts egalitarian attitudes towards marriage and children: Evidence from the European values study. Social Indicators Research, 120(1), 213–228. https://doi.org/10.1007/s11205-014-0580-3
50. Zagheni, E., & Weber, I. (2015). Demographic research with non-representative internet data. International Journal of Manpower, 3(1), 6 6 13–25. https://doi.org/10.1108/IJM-12-2014-0261
Supplementary files
Review
For citations:
Kalabikhina I.E., Kazbekova Z.G., Banin E.P., Klimenko G.A. Demographic values and socio-demographic profile of the VKontakte users: is there a connection? Moscow University Economics Bulletin. 2023;(3):157-180. (In Russ.) https://doi.org/10.55959/MSU0130-0105-6-58-3-8