Готовность высшего образования к внедрению искусственного интеллекта: библиометрический анализ
https://doi.org/10.55959/MSU0130-0105-6-60-3-14
Аннотация
Цель настоящего исследования заключается в выявлении ключевых направлений готовности к использованию ИИ в высшем образовании. Актуальность исследования обусловлена стремительной цифровой трансформацией высшего образования под воздействием ИИ и отсутствием целостного представления о направлениях исследовательской готовности к его внедрению. Был сформулирован следующий исследовательский вопрос: Какие направления исследований наблюдаются в существующем дискурсе о готовности к распространению технологий искусственного интеллекта в высшем образовании? Для ответа на исследовательский вопрос был проведен библиометрический анализ совместного цитирования 2237 публикаций, индексируемых в базе данных SCOPUS за период 2015–2025 гг. Далее, в исследовании было проведено качественное кодирование аннотаций для сужения выборки до 598 наиболее значимых публикаций. С помощью библиометрического анализа выделены пять основных направлений исследований: (1) формирование стратегической готовности университетов к ИИ в образовательных организациях (2) формирование организационной готовности университетов к ИИ (3) формирование потребительской готовности преподавателей и студентов к ИИ (4) формирование психологических параметров готовности к ИИ (5) формирование механизмов принятия решений при внедрении ИИ. Полученные результаты свидетельствуют о многоуровневом характере готовности к внедрению ИИ на стратегическом, организационном и личностно-психологическом. Исследование представляет собой систематический oбзор научных публикаций с использованием библиометрического подхода, что позволяет выявить новые перспективные направления дальнейшей разработки темы готовности высшего образования к распространению ИИ. Оно вносит вклад в понимание роли ИИ как ключевого фактора трансформации высшего образования.
Об авторе
О. А. ТункевичусРоссия
Тункевичус Ольга Александровна — аспирант
Москва
Список литературы
1. Багратиони, К. А. (2023). Между сопротивлением изменениям и готовностью к ним: библиометрический анализ. Организационная Психология, 13 (4), 141–166. https://doi.org/10.17323/2312-5942-2023-13-4-141-166
2. Налимов, В. В., & Мульченко, З. М. (2013). Наукометрия. Рипол Классик.
3. Наумцева, Е. А. (2016). Психологическая готовность к организационным изменениям: подходы, понятия, методики. Организационная Психология, 6 (2), 55–74.
4. Наумцева, Е. А., & Штроо, В. А. (2020). Психологическая готовность к организационным изменениям и ее социально-психологические предикторы. Социальная Психология и Общество, 11 (4), 151–164. https://doi.org/10.17759/sps.2020110411
5. Штроо, В. А. (2021). Отношение сотрудников к организационным изменениям: сопротивление vs готовность. Вестник Московского Университета. Серия 14. Психология, 2, 142–177. https://doi.org/10.11621/vsp.2021.02.08
6. Aboelmaged, M. G. (2014). Predicting e-readiness at fi rm-level: An analysis of technological, organizational and environmental (TOE) eff ects on e-maintenance readiness in manufacturing fi rms. International Journal of Information Management, 34 (5), 639–651. https://doi.org/10.1016/j.ijinfomgt.2014.05.002
7. Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor markets. Journal of Political Economy, 128 (6), 2188–2244. https://doi.org/10.1086/705716
8. Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artifi cial intelligence (XAI). IEEE Access, 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
9. Adam, M., Wessel, M., & Benlian, A. (2021). AI-based chatbots in customer service and their eff ects on user compliance. Electronic Markets, 31 (2), 427–445. https://doi.org/10.1007/s12525-020-00414-7
10. Agarwal, R., & Prasad, J. (1998a). A conceptual and operational defi nition of personal innovativeness in the domain of information technology. Information Systems Research, 9 (2), 204–215. https://doi.org/10.1287/isre.9.2.204
11. Agarwal, R., & Prasad, J. (1998b). The antecedents and consequents of user perceptions in information technology adoption. Decision Support Systems, 22 (1), 15–29. https://doi.org/10.1016/S0167-9236(97)00006-7
12. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50 (2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
13. Akter, S., Hossain, M. A., Sajib, S., Sultana, S., Rahman, M., Vrontis, D., & McCarthy, G. (2023). A framework for AI-powered service innovation capability: Review and agenda for future research. Technovation, 125, 102768. https://doi.org/10.1016/j.technovation.2023.102768
14. Anand, A., Brøns Kringelum, L., Øland Madsen, C., & Selivanovskikh, L. (2021). Interorganizational learning: a bibliometric review and research agenda. The Learning Organization, 28 (2), 111–136. https://doi.org/10.1108/TLO-02-2020-0023
15. Anand, A., & Dumazert, J. (2022). Knowledge sharing in organization: Reviewing the foundations of the fi eld and current themes using bibliometrics. Knowledge and Process Management, 29 (3), 270–283. https://doi.org/10.1002/kpm.1720
16. Androutsopoulou, A., Karacapilidis, N., Loukis, E., & Charalabidis, Y. (2019). Transforming the communication between citizens and government through AI-guided chatbots. Government Information Quarterly, 36 (2), 358–367. https://doi.org/10.1016/j.giq.2018.10.001
17. Araujo, T. (2018a). Living up to the chatbot hype: The infl uence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Computers in Human Behavior, 85, 183–189. https://doi.org/10.1016/j.chb.2018.03.051
18. Araujo, T. (2018b). Living up to the chatbot hype: The infl uence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Computers in Human Behavior, 85, 183–189. https://doi.org/10.1016/j.chb.2018.03.051
19. Arpaci, I., Yardimci, Y. C., Ozkan, S., & Turetken, O. (2012). Organizational adoption of information technologies: A literature review. International Journal of Ebusiness and Egovernment Studies, 4 (2), 37–50.
20. Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., & Benjamins, R. (2020). Explainable Artifi cial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
21. Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. https://doi.org/10.1016/j.tele.2020.101473
22. Atwal, G., & Bryson, D. (2021). Antecedents of intention to adopt artifi cial intelligence services by consumers in personal fi nancial investing. Strategic Change, 30 (3), 293–298. https://doi.org/10.1002/jsc.2412
23. Baabdullah, A. M., Alalwan, A. A., Slade, E. L., Raman, R., & Khatatneh, K. F. (2021). SMEs and artifi cial intelligence (AI): Antecedents and consequences of AI-based B2B practices. Industrial Marketing Management, 98, 255–270. https://doi.org/10.1016/j.indmarman.2021.09.003
24. Bag, S., Gupta, S., Kumar, A., & Sivarajah, U. (2021). An integrated artifi cial intelligence framework for knowledge creation and B2B marketing rational decision making for improving fi rm performance. Industrial Marketing Management, 92, 178–189. https://doi.org/10.1016/j.indmarman.2020.12.001
25. Bagrationi, K., & Gordienko, O. (2024). Dynamics of Organisational Change: Resistance, Readiness, and the Road Ahead. European Conference on Innovation and Entrepreneurship, 81–88.
26. Bagrationi, K., & Thurner, T. (2020). Using the future time perspective to analyse resistance to, and readiness for, change. Employee Relations: The International Journal, 42 (1), 262–279. https://doi.org/10.1108/ER-04-2018-0113
27. Bagrationi, K., & Thurner, T. (2023). Middle Management’s Resistance to Digital Change. Foresight and STI Governance (Foresight-Russia till No. 3/2015), 17 (2), 49–60. https://doi.org/10.17323/2500-2597.2023.2.49.60
28. Balakrishnan, J., Abed, S. S., & Jones, P. (2022). The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-effi cacy in chatbot-based services? Technological Forecasting and Social Change, 180, 121692. https://doi.org/10.1016/j.techfore.2022.121692
29. Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management,17(1), 99–120.https://doi.org/https://doi.org/10.1177/014920639101700108
30. Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2019). Supply chain risk management and artifi cial intelligence: state of the art and future research directions. International Journal of Production Research, 57 (7), 2179–2202. https://doi.org/10.1080/00207543.2018.1530476
31. Belanche, D., Casaló, L. V, & Flavián, C. (2019). Artifi cial Intelligence in FinTech: understanding robo-advisors adoption among customers. Industrial Management & Data Systems, 119 (7), 1411–1430. https://doi.org/10.1108/IMDS-08-2018-0368
32. Benckendorff , P., & Zehrer, A. (2013). A network analysis of tourism research. Annals of Tourism Research, 43, 121–149. https://doi.org/10.1016/j.annals.2013.04.005
33. Benckendorff , P., & Zehrer, A. (2017). Handbook of teaching and learning in tourism. Edward Elgar Publishing. https://doi.org/10.4337/9781784714802
34. Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Managing artifi cial intelligence. MIS Quarterly, 45 (3). https://doi.org/10.1002/jwmg.22492
35. Bigman, Y. E., & Gray, K. (2018). People are averse to machines making moral decisions. Cognition, 181, 21–34. https://doi.org/10.1016/j.cognition.2018.08.003
36. Bin-Nashwan, S. A., Sadallah, M., & Bouteraa, M. (2023). Use of ChatGPT in academia: Academic integrity hangs in the balance. Technology in Society, 75, 102370. https://doi.org/10.1016/j.techsoc.2023.102370
37. Brock, J. K. -U., & Von Wangenheim, F. (2019). Demystifying AI: What digital transformation leaders can teach you about realistic artifi cial intelligence. California Management Review, 61(4), 110–134. https://doi.org/10.1177/1536504219865226
38. Brougham, D., & Haar, J. (2018). Smart technology, artifi cial intelligence, robotics, and algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239–257. https://doi.org/10.1017/jmo.2016.55
39. Budhwar, P., Malik, A., De Silva, M. T. T., & Thevisuthan, P. (2022). Artifi cial intelligence–challenges and opportunities for international HRM: a review and research agenda. The InTernaTIonal Journal of Human Resource ManagemenT, 33(6), 1065–1097. https://doi.org/10.1080/09585192.2022.2035161
40. Cao, G., Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2021). Understanding managers’ attitudes and behavioral intentions towards using artifi cial intelligence for organizational decision-making. Technovation, 106, 102312. https://doi.org/10.1016/j.technovation.2021.102312
41. Celik, I. (2023). Towards Intelligent-TPACK: An empirical study on teachers’ professional knowledge to ethically integrate artifi cial intelligence (AI)-based tools into education. Computers in Human Behavior, 138, 107468. https://doi.org/10.1016/j.chb.2022.107468
42. Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artifi cial intelligence in higher education: A quantitative analysis using structural equation modelling. Education and Information Technologies, 25, 3443–3463. https://doi.org/10.1007/s10639-020-10159-7
43. Chatterjee, S., Rana, N. P., Dwivedi, Y. K., & Baabdullah, A. M. (2021). Understanding AI adoption in manufacturing and production fi rms using an integrated TAM-TOE model. Technological Forecasting and Social Change, 170, 120880. https://doi.org/10.1016/j.techfore.2021.120880
44. Chen, S., Duan, Y., Edwards, J. S., & Lehaney, B. (2006). Toward understanding interorganizational knowledge transfer needs in SMEs: insight from a UK investigation. Journal of Knowledge Management, 10 (3), 6–23. https://doi.org/10.1108/13673270610670821
45. Cheng, X., Zhang, X., Cohen, J., & Mou, J. (2022). Human vs. AI: Understanding the impact of anthropomorphism on consumer response to chatbots from the perspective of trust and relationship norms. Information Processing & Management, 59 (3), 102940. https://doi.org/10.1016/j.ipm.2022.102940
46. Chi, O. H., Denton, G., & Gursoy, D. (2020). Artifi cially intelligent device use in service delivery: a systematic review, synthesis, and research agenda. Journal of Hospitality Marketing & Management, 29 (7), 757–786. https://doi.org/10.1080/19368623.2020.1721394
47. Chiu, T. K. F. (2021). A holistic approach to the design of artifi cial intelligence (AI) education for K-12 schools. TechTrends, 65 (5), 796–807. https://doi.org/10.1007/s11528-021-00637-1
48. Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artifi cial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118
49. Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023a). Unlocking the value of artifi cial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33 (1), 100899. https://doi.org/10.1016/j.hrmr.2022.100899
50. Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023b). Unlocking the value of artifi cial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33 (1), 100899. https://doi.org/10.1016/j.hrmr.2022.100899
51. Compeau, D. R., & Higgins, C. A. (1995). Computer self-effi cacy: Development of a measure and initial test. MIS Quarterly, 189–211. https://doi.org/10.2307/249688
52. Crompton, H., & Burke, D. (2023). Artifi cial intelligence in higher education: the state of the fi eld. International Journal of Educational Technology in Higher Education, 20 (1), 22. https://doi.org/10.1186/s41239-023-00392-8
53. Crompton, H., & Song, D. (2021). The Potential of Artifi cial Intelligence in Higher Education. Revista Virtual Universidad Católica Del Norte. https://doi.org/10.35575/rvucn.n62a1
54. Damerji, H., & Salimi, A. (2021). Mediating eff ect of use perceptions on technology readiness and adoption of artifi cial intelligence in accounting. Accounting Education, 30 (2), 107–130. https://doi.org/10.1080/09639284.2021.1872035
55. Davenport, T. H. (2018). The AI advantage: How to put the artificial intelligence revolution to work. mit Press. https://doi.org/10.1080/15228053.2020.1756084
56. Davenport, T. H., & Ronanki, R. (2018). Artifi cial intelligence for the real world. Harvard Business Review, 96(1), 108–116. https://doi.org/10.56726/irjmets42512
57. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319–340. https://doi.org/10.2307/249008
58. Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: people erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114. https://doi.org/10.1037/xge0000033
59. Dietvorst, B. J., Simmons, J. P., & Massey, C. (2018). Overcoming algorithm aversion: People will use imperfect algorithms if they can (even slightly) modify them. Management Science, 64(3), 1155–1170. https://doi.org/10.1287/mnsc.2016.2643
60. Dignum, V. (2019). Responsible artificial intelligence: how to develop and use AI in a responsible way (Vol. 2156). Springer. https://doi.org/10.1007/s10710-020-09394-1
61. Du, S., & Xie, C. (2021). Paradoxes of artifi cial intelligence in consumer markets: Ethical challenges and opportunities. Journal of Business Research, 129, 961–974. https://doi.org/10.1016/j.jbusres.2020.08.024
62. Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2024). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 61(3), 460–474. https://doi.org/10.1080/14703297.2023.2195846
63. Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474. https://doi.org/10.1016/S1071-5819(03)00111-3
64. Flores-Vivar, J.-M., & García-Peñalvo, F.-J. (2023). Refl ections on the ethics, potential, and challenges of artifi cial intelligence in the framework of quality education (SDG4). Comunicar, 31(74), 37–47. https://doi.org/10.3916/C74-2023-03
65. Frick, N. R. J., Mirbabaie, M., Stieglitz, S., & Salomon, J. (2021). Maneuvering through the stormy seas of digital transformation: the impact of empowering leadership on the AI readiness of enterprises. Journal of Decision Systems, 30(2–3), 235–258. https://doi.org/10.1080/12460125.2020.1870065
66. George, B., & Wooden, O. (2023). Managing the strategic transformation of higher education through artifi cial intelligence. Administrative Sciences, 13(9), 196. https://doi.org/10.3390/admsci13090196
67. Go, E., & Sundar, S. S. (2019). Humanizing chatbots: The eff ects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304– 316. https://doi.org/10.1016/j.chb.2019.01.020
68. Górriz, J. M., Ramírez, J., Ortiz, A., Martinez-Murcia, F. J., Segovia, F., Suckling, J., Leming, M., Zhang, Y.-D., Álvarez-Sánchez, J. R., & Bologna, G. (2020). Artifi cial intelligence within the interplay between natural and artifi cial computation: Advances in data science, trends and applications. Neurocomputing, 410, 237–270. https://doi.org/10.1016/j.neucom.2020.05.078
69. Gray, K., & Wegner, D. M. (2012). Feeling robots and human zombies: Mind perception and the uncanny valley. Cognition, 125(1), 125–130. https://doi.org/10.1016/j.cognition.2012.06.007
70. Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artifi cially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157–169. https://doi.org/10.1016/j.ijinfomgt.2019.03.008
71. Haenlein, M., Kaplan, A., Tan, C.-W., & Zhang, P. (2019). Artifi cial intelligence (AI) and management analytics. Journal of Management Analytics, 6(4), 341–343. https://doi.org/10.1080/23270012.2019.1699876
72. Helfat, C. E., Finkelstein, S., Mitchell, W., Peteraf, M., Singh, H., Teece, D., & Winter, S. G. (2009). Dynamic capabilities: Understanding strategic change in organizations. John Wiley & Sons.
73. Hradecky, D., Kennell, J., Cai, W., & Davidson, R. (2022). Organizational readiness to adopt artifi cial intelligence in the exhibition sector in Western Europe. International Journal of Information Management, 65, 102497. https://doi.org/10.1016/j.ijinfomgt.2022.102497
74. Huang, M.-H., & Rust, R. T. (2018). Artifi cial intelligence in service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459
75. Hwang, G.-J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of Artifi cial Intelligence in Education. In Computers and Education: Artificial Intelligence (Vol. 1, p. 100001). Elsevier. https://doi.org/10.1016/j.caeai.2020.100001
76. Ivanov, S., & Webster, C. (2020). Robots in tourism: A research agenda for tourism economics.Tourism Economics,26(7), 1065–1085.https://doi.org/10.1177/1354816619879583
77. Jones, R. A., Jimmieson, N. L., & Griffi ths, A. (2005). The impact of organizational culture and reshaping capabilities on change implementation success: The mediating role of readiness for change. Journal of Management Studies, 42(2), 361–386. https://doi.org/10.1111/j.1467-6486.2005.00500.x
78. Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62, 101280. https://doi.org/10.1016/j.techsoc.2020.101280
79. Katsamakas, E., Pavlov, O. V, & Saklad, R. (2024). Artifi cial intelligence and the transformation of higher education institutions: A systems approach. Sustainability, 16(14), 6118.
80. Ko, K. K. -W. C. W., & Tang, W. (2025). Evaluating English Teachers’ Artifi cial Intelligence Readiness and Training Needs with a TPACK-Based Model. World, 15(1).
81. Kohnke, L., Moorhouse, B. L., & Zou, D. (2023a). ChatGPT for language teaching and learning. Relc Journal, 54(2), 537–550. https://doi.org/10.1177/00336882231162868
82. Kohnke, L., Moorhouse, B. L., & Zou, D. (2023b). Exploring generative artifi cial intelligence preparedness among university language instructors: A case study. Computers and Education: Artificial Intelligence, 5, 100156. https://doi.org/10.1016/j.caeai.2023.100156
83. Kroshilin, S. (2022). Digital transformation of Russian universities during the pandemic. Science Culture Society, 28, 93–110. https://doi.org/10.19181/nko.2022.28.3.7
84. Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. Telecommunications Policy, 44(6), 101976. https://doi.org/10.1016/j.telpol.2020.101976
85. Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., & Zou, J. (2022). Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence, 4(8), 669–677. https://doi.org/10.1038/s42256-022-00516-1
86. Liao, H., Tang, M., Luo, L., Li, C., Chiclana, F., & Zeng, X.-J. (2018). A bibliometric analysis and visualization of medical big data research. Sustainability, 10(1), 166. https://doi.org/10.3390/su10010166
87. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., Clarke, M., Devereaux, P. J., Kleij nen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Annals of Internal Medicine, 151(4), W-65. https://doi.org/10.1371/journal.pmed.1000100
88. Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790. https://doi.org/10.1016/j.ijme.2023.100790
89. Lu, V. N., Wirtz, J., Kunz, W. H., Paluch, S., Gruber, T., Martins, A., & Patterson, P. G. (2020). Service robots, customers and service employees: what can we learn from the academic literature and where are the gaps? Journal of Service Theory and Practice, 30(3), 361–391. https://doi.org/10.1108/JSTP-04-2019-0088
90. Luckin, R., Cukurova, M., Kent, C., & Du Boulay, B. (2022). Empowering educators to be AI-ready. Computers and Education: Artificial Intelligence, 3, 100076. https://doi.org/10.1016/j.caeai.2022.100076
91. Mahroof, K. (2019). A human-centric perspective exploring the readiness towards smart warehousing: The case of a large retail distribution warehouse. International Journal of Information Management, 45, 176–190. https://doi.org/10.1016/j.ijinfomgt.2018.11.008
92. Makarius, E. E., Mukherjee, D., Fox, J. D., & Fox, A. K. (2020). Rising with the machines: A sociotechnical framework for bringing artifi cial intelligence into the organization. Journal of Business Research, 120, 262–273. https://doi.org/10.1016/j.jbusres.2020.07.045
93. Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734. https://doi.org/10.5465/amr.1995.9508080335
94. Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-Navarro, D. E., Thierry-Aguilera, R., & Gerardou, F. S. (2023). Challenges and opportunities of generative AI for higher education as explained by ChatGPT. Education Sciences, 13(9), 856. https://doi.org/10.3390/educsci13090856
95. Mikalef, P., & Gupta, M. (2021). Artifi cial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and fi rm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434
96. Mishra, P., Warr, M., & Islam, R. (2023). TPACK in the age of ChatGPT and Generative AI. Journal of Digital Learning in Teacher Education, 39(4), 235–251. https://doi.org/10.1080/21532974.2023.2247480
97. Moher, D., Liberati, A., Tetzlaff , J., Altman, D. G., & PRISMA Group*, t. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264–269. https://doi.org/10.1371/journal.pmed.1000097
98. Moussawi, S., Koufaris, M., & Benbunan-Fich, R. (2021). How perceptions of intelligence and anthropomorphism aff ect adoption of personal intelligent agents. Electronic Markets, 31(2), 343–364. https://doi.org/10.1007/s12525-020-00411-w
99. Muñoz, G. F. R., & Chimbo, K. M. O. (2023). Application of artifi cial intelligence techniques in the administrative management of higher education institutions: an analysis of their eff ectiveness in process optimization and strategic decision making. Revista Científica Interdisciplinaria Investigación y Saberes, 13(2), 66–83.
100. Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041. https://doi.org/10.1016/j.caeai.2021.100041
101. Nguyen, A., Ngo, H. N., Hong, Y., Dang, B., & Nguyen, B.-P. T. (2023). Ethical principles for artifi cial intelligence in education. Education and Information Technologies, 28(4), 4221–4241. https://doi.org/10.1007/s10639-022-11316-w
102. Ouyang, F., Zheng, L., & Jiao, P. (2022). Artifi cial intelligence in online higher education: A systematic review of empirical research from 2011 to 2020. Education and Information Technologies, 27(6), 7893–7925. https://doi.org/10.1007/s10639-022-10925-9
103. Pan, Y., Froese, F., Liu, N., Hu, Y., & Ye, M. (2023). The adoption of artifi cial intelligence in employee recruitment: The infl uence of contextual factors. In Artificial intelligence and international HRM (pp. 60–82). Routledge. https://doi.org/10.1080/09585192.2021.1879206
104. Patil, P., Tamilmani, K., Rana, N. P., & Raghavan, V. (2020). Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. International Journal of Information Management, 54, 102144. https://doi.org/10.1016/j.ijinfomgt.2020.102144
105. Rane, N., Choudhary, S. P., & Rane, J. (2024). Acceptance of artifi cial intelligence: key factors, challenges, and implementation strategies. Journal of Applied Artificial Intelligence, 5(2), 50–70.
106. Rogers, E. M., & Smith, L. (1962).Bibliography on the Diffusion of Innovations. Department of Communication, Michigan State University.
107. Roshanaei, M. (2024). Towards best practices for mitigating artifi cial intelligence implicit bias in shaping diversity, inclusion and equity in higher education. Education and Information Technologies, 1–26. https://doi.org/10.1007/s10639-024-12605-2
108. Roy, R., Babakerkhell, M. D., Mukherjee, S., Pal, D., & Funilkul, S. (2022). Evaluating the intention for the adoption of artifi cial intelligence-based robots in the university to educate the students. IEEE Access, 10, 125666–125678. https://doi.org/10.1109/ACCESS.2022.3225555
109. Ruan, Y., & Mezei, J. (2022). When do AI chatbots lead to higher customer satisfaction than human frontline employees in online shopping assistance? Considering product attribute type. Journal of Retailing and Consumer Services, 68, 103059. https://doi.org/10.1016/j.jretconser.2022.103059
110. Salager-Meyer, F. (1990). Discoursal fl aws in medical English abstracts: A genre analysis per research-and text-type. Text-Interdisciplinary Journal for the Study of Discourse, 10(4), 365–384. https://doi.org/10.1515/text.1.1990.10.4.365
111. Schick-Makaroff , K., MacDonald, M., Plummer, M., Burgess, J., & Neander, W. (2016). What synthesis methodology should I use? A review and analysis of approaches to research synthesis. AIMS Public Health, 3(1), 172. https://doi.org/10.3934/publichealth.2016.1.172
112. Sheehan, B., Jin, H. S., & Gottlieb, U. (2020). Customer service chatbots: Anthropomorphism and adoption. Journal of Business Research, 115, 14–24. https://doi.org/10.1016/j.jbusres.2020.04.030
113. Shi, S., Gong, Y., & Gursoy, D. (2021). Antecedents of trust and adoption intention toward artifi cially intelligent recommendation systems in travel planning: a heuristic–systematic model. Journal of Travel Research, 60(8), 1714–1734. https://doi.org/10.1177/0047287520966395
114. Solís, M. E. C., Martínez, E. L., Degante, E. C., Godoy, E. P., & Martínez, Y. A. (2023). Inteligencia artifi cial generativa para fortalecer la educación superior: Generative artifi cial intelligence to boost higher education. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 4(3), 767–784.
115. Szumska, A., & Weixler, M. (2024). Investigating educators’ readiness to adopt generative artificial intelligence in entrepreneurship education.
116. Takahashi, C. K., de Figueiredo, J. C. B., & Scornavacca, E. (2024). Investigating the diff usion of innovation: A comprehensive study of successive diff usion processes through analysis of search trends, patent records, and academic publications. Technological Forecasting and Social Change, 198, 122991. https://doi.org/10.1016/j.techfore.2023.122991
117. Teece, D. J. (2000). Strategies for managing knowledge assets: the role of fi rm structure and industrial context. Long Range Planning, 33(1), 35–54. https://doi.org/10.1016/S0024-6301(99)00117-X
118. Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509–533. https://doi.org/10.1002/(SICI)1097-0266(199708)18:7%3C509::AID-SMJ882%3E3.0.CO;2-Z
119. Thyer, B. (2008). Pocket guide to preparing social work research articles. Oxford university press.
120. Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
121. Tung, V. W. S., & Au, N. (2018). Exploring customer experiences with robotics in hospitality. International Journal of Contemporary Hospitality Management, 30(7), 2680– 2697. https://doi.org/10.1108/IJCHM-06-2017-0322
122. Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3
123. Venkatesh, V. (2022). Adoption and use of AI tools: a research agenda grounded in UTAUT. Annals of Operations Research, 308(1), 641–652. https://doi.org/10.1007/s10479-020-03918-9
124. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unifi ed view. MIS Quarterly, 425–478. https://doi.org/10.2307/30036540
125. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2016). Unifi ed theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328–376. https://doi.org/10.17705/1jais.00428
126. Vivar, J. M. F., & Peñalvo, F. J. G. (2023). Refl exiones sobre la ética, potencialidades y retos de la Inteligencia Artifi cial en el marco de la Educación de Calidad (ODS4). Comunicar: Revista Cientifica de Comunicacion y Educacion, 74, 37–47.
127. Walsh, I., & Renaud, A. (2017). Reviewing the literature in the IS fi eld: Two bibliometric techniques to guide readings and help the interpretation of the literature. Systèmes d’information & Management, 22(3), 75–115. https://doi.org/10.3917/sim.173.0075
128. Walter, C., & Ribière, V. (2013). A citation and co-citation analysis of 10 years of KM theory and practices. Knowledge Management Research & Practice, 11(3), 221–229. https://doi.org/10.1057/kmrp.2013.25
129. Wang, X., Li, L., Tan, S. C., Yang, L., & Lei, J. (2023). Preparing for AI-enhanced education: Conceptualizing and empirically examining teachers’ AI readiness. Computers in Human Behavior, 146, 107798. https://doi.org/10.1016/j.chb.2023.107798
130. Zaman, B. U. (2023). Transforming education through ai, benefi ts, risks, and ethical considerations. Authorea Preprints.
131. Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artifi cial intelligence applications in higher education–where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1–27. https://doi.org/10.1186/s41239-019-0171-0
132. Zhang, B., & Dafoe, A. (2019). Artifi cial intelligence: American attitudes and trends. Available at SSRN 3312874. https://doi.org/10.2139/ssrn.3312874
133. Zhang, J., Yu, Q., Zheng, F., Long, C., Lu, Z., & Duan, Z. (2016). Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology, 67(4), 967–972. https://doi.org/10.1002/asi.23437
134. Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025
135. Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760–767. https://doi.org/10.1016/j.chb.2010.01.013
136. Zinchenko, M., Bagrationi, K., & Gordienko, O. (2024). Development of Corporate University Evolution Scenarios. European Conference on E-Learning, 451–457.
137. Zuiderwij k, A., Chen, Y.-C., & Salem, F. (2021). Implications of the use of artifi cial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, 38(3), 101577. https://doi.org/10.1016/j.giq.2021.101577
138. Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods,18(3), 429–472. https://doi.org/10.1177/1094428114562629
Дополнительные файлы
Рецензия
Для цитирования:
Тункевичус О.А. Готовность высшего образования к внедрению искусственного интеллекта: библиометрический анализ. Вестник Московского университета. Серия 6. Экономика. 2025;(3):319-347. https://doi.org/10.55959/MSU0130-0105-6-60-3-14
For citation:
Tunkevichus O.A. Higher education readiness to implement artifi cial intelligence: a bibliometric analysis. Moscow University Economics Bulletin. 2025;(3):319-347. (In Russ.) https://doi.org/10.55959/MSU0130-0105-6-60-3-14