Preview

Moscow University Economics Bulletin

Advanced search

Portfolio Optimization with Risk Decomposition

https://doi.org/10.38050/01300105201754

Abstract

The paper offers the modification of traditional portfolio optimization approach to construct the portfolio with possibility to control both systematic and specific risk (portfolio with risk decomposition). Built on modern econometric tools, the author estimates and forecasts the dynamics of alphas and betas of stocks in the frame of CAPM model , which are further applied for portfolio optimization. The closing weekly prices of 10 Australian stocks and ASX Index as the market index during the period from July 2000 to July 2016 were used. Within the sample there is no evidence of arbitrage on the Australian equity market employing neutral beta portfolio. The study confirms that portfolios with risk decomposition outperform Markowitz’s one according to various performance indicators.

About the Author

K. G. Asaturov
National research University "Higher school of Economics"
Russian Federation


References

1. Асатуров К. Г. Детерминанты систематического риска: анализ на основе российского фондового рынка // Финансы и кредит. - 2017. - Т. 23. -№ 23. - С. 1343-1363.

2. Ang A., Kristensen D. Testing Conditional Factor Models // Journal of Financial Economics. - 2012. - Vol. 106. - P. 132-156.

3. Bakshi G., Kapadia N., Madan D. Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options // Review of Financial Studies. - 2003. - Vol. 16. - No. 1. - P. 101-143.

4. Chen S.-W., Huang N. C. Estimates of the ICAPM with Regime-Switching Betas: Evidence from Four Pacific Rim Economies // Applied Financial Economics. - 2007. - Vol. 17. - P. 313-327.

5. Collins D. W., Ledolter J., Rayburn J. Some Further Evidenceon the Stochastic Properties of Systematic risk // Journal of Business. - 1987. - Vol. 60. - No. 3. - P. 425-448.

6. Eisenbeiss M., Kauermann G., Semmler W. Estimating Beta-Coefficients of German Stock Data: A Non-Parametric Approach // The European Journal of Finance. - 2007. - Vol. 13. - No. 6. - P. 503-522.

7. Ephraim Y., Merhav N. Hidden Markov Processes // IEEE Transactions on Information Theory. - 2002. - Vol. 48. - No. 6. - P. 1518-1569.

8. Esteban M. V., Orbe-Manadaluniz S. A Nonparametric Approach for Estimating Betas: the Smoothed Rolling Estimator // Applied Economics. - 2010. - Vol. 42. - P. 1269-1279.

9. Fabozzi F., Francis J. Beta as a Random Coefficient // Journal of Financial and Quantative Analysis. - 1978. - Vol. 13. - P. 101-116.

10. Faff R. W., Lee J. H. H., Fry T. R. L. Time stationarity of systematic risk: Some Australian evidence // Journal of Business and Accounting. - 1992. - Vol. 19. - No. 2. - P. 253-270.

11. Faff R. W., Hillier D., Hillier J. Time-Varying Beta Risk: An Analysis of Alternative Modeling Techniques // Journal of Business Finance and Accounting. - 2000. - Vol. 27. - P. 523-554.

12. Fama E. F. Market Efficiency, Long-Term Returns, and Behavioral Finance // Journal of Financial Economics. - 1998. - Vol. 49. - P. 283-306.

13. Fama E. F., French K. R. Common Risk Factors in the Returns on Stocks and Bonds // Journal of Financial Economics. - 1993. - Vol. 33. - No. 1. - P. 3-56.

14. Groenewold N. Share Market Efficiency: Tests Using Daily Data for Australia and New Zealand // Applied Financial Economics. - 1997. - Vol. 7. - P. 645-657.

15. Groenewold N., Fraser P. Time-Varying Estimates of CAPM Betas // Mathematics and Computers in Simulations. - 1999. - Vol. 48. - P. 531-539.

16. Hamilton J. D. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle // Econometrica. - 1989. - Vol. 57. - No. 2. - P. 357-384.

17. Hastie T., Tibshirani R. Varying-Coefficient Models // Journal of the Royal Statistic Society, Series B (Methodology). - 1993. - Vol. 55. - No. 4. - P. 757-796.

18. He Z., Kryzanowski L. Dynamic Betas for Canadian Sector Portfolios // International Review of Financial Analysis.- 2008. - Vol. 17. - P. 1110-1122.

19. Huang R. H. C. Tests of Regime-Switching CAPM // Applied Financial Economics. - 2000. - Vol. 10. - P. 573-578.

20. Jacobs B. L., Levy K. N., Markowitz H. M. Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions // Operations Research. - 2005. - Vol. 53. - No. 4. - P. 586-599.

21. Jacobs B. L., Levy K. N., Starter D. On the Optimality of Long-Short Strategies // Financial Analysts Journal. - 1998. - Vol. 54. - No. 2. - P. 40-51.

22. Kalman R. E. A New Approach to Linear Filtering and Prediction Problems // Journal of Basic Engineering. - 1960. - Vol. 82. - No. 1. - P. 35-45.

23. Keating C., Shadwick W. F. A Universal Performance Measure. - UK: The Finance Development Centre Limited, 2002. - P. 1-33.

24. Kim D. The Extent of Nonstationarity of Beta // Review of Quantitative Finance and Accounting. - 1993. - Vol. 3. - P. 241-254.

25. Klaassen P. Financial Asset Pricing Theory and Stochastic Programming Models for Asset / Liability Management: A Synthesis // Management Science. - 1998. - Vol. 44. - P. 31-48.

26. Li Q., Racine J. S. Smooth Varying-Coefficient Estimation and Inference for Qualitative and Quantitative Data // Econometric Theory. - 2010. - Vol. 26. - P. 1607-1637.

27. Li Y., Yang L. Testing Conditional Factor Models: A Nonparametric Approach // Journal of Empirical Finance. - 2011. - Vol. 18. - P. 972-992.

28. Lie F., Brooks R., Fama R. Modelling the Equity Beta Risk of Australian Financial Sector Companies // Australian Economic Papers. - 2000. - Vol. 39. - P. 301-311.

29. Markowitz H. M. Portfolio Selection // Journal of Finance. - 1952. - Vol. 12. - P. 77-91.

30. Markowitz H. M. Portfolio Selection: Efficient Diversification of Investments. - New York: John Wiley and Sons, 1959.

31. Marshall A., Maulana T., Tang L. The Estimation and Determinants of Emerging Market Country Risk and the Dynamic Conditional GARCH Model // International Review of Financial Analysis. - 2009. - Vol. 18. - No. 5. - P. 250-259.

32. Mergner S., Bulla J. Time-Varying Beta Risk of Pan-European Industry Portfolios: A Comparison of Alternative Modeling Techniques // European Journal of Finance. - 2008. - Vol. 14. - No. 8. - P. 771-802.

33. Merton R. C. Optimum Consumption and Portfolio Rules in a Continuous Time Model // Journal of Economic Theory. - 1971. - Vol. 3. - No. 4. - P. 373- 413.

34. Morgan J. P. RiskMetrics (TM): Technical Document (4thed). - New York: Morgan Guaranty Trust Company, 1996.

35. Mulvey J., Shetty B. Financial Planning via Multi-Stage Stochastic Optimization // Computers & Operations Research. - 2004. - Vol. 31. - No. 1. - P. 1-20.

36. Rabiner L. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition // IEEE Transactions on Information Theory. - 1989. - Vol. 77. - No. 2. - P. 257-284.

37. Rockafellar R. T., Uryasev S. Optimization of Conditional Value-at-Risk // Journal of Risk. - 2000. - Vol. 2. - P. 21-42.

38. Samuelson P. Lifetime Portfolio Selection by Dynamic Stochastic Programming // Review of Economic Statistics. - 1969. - Vol. 51. - No. 3. - P. 239-246.

39. Sharpe W. F. Capital Asset Prices: a Theory of Market Equilibrium under Conditions of Risk // Journal of Finance. - 1964. - Vol. 45. - P. 425-442.

40. Shen C. H. Testing Efficiency of the Taiwan-US Forward Exchange Market - a Markov Switching Model // Asian Economic Journal. - 1994. - Vol. 8. - P. 205-215.


Review

For citations:


Asaturov K.G. Portfolio Optimization with Risk Decomposition. Moscow University Economics Bulletin. 2017;(5):61-85. (In Russ.) https://doi.org/10.38050/01300105201754

Views: 356


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0130-0105 (Print)