Preview

Moscow University Economics Bulletin

Advanced search

Transformation of methods and tools of competitive analysis in the digital economy

https://doi.org/10.38050/013001052019610

Abstract

The article deals with the transformation processes of competitive analysis methods under the influence of digital economy, the development of electronic markets and communications. It is shown that the development of market strategies requires a new methodology and structure of analytical tools to obtain valuable results about competitors and consumers in different markets. The proposed approach to competitive analysis is based on the methodology of integrated use of all business intelligence blocks: big data Analytics, content analysis, web Analytics, mobile Analytics. New Internet services and platforms that allow for effective competitive analysis are evaluated. On the basis of surveys about readiness of Russian management to use digital technologies in market research, recommendations on the directions of development of educational programs in Russian universities are formulated. The article is based on the results of the authors ‘ presentations and discussions at the scientific seminar on digital economy held in 2018–2019 at the faculty of Economics of Lomonosov Moscow state University.

About the Authors

V. V. Gerasimenko
Lomonosov Moscow State University
Russian Federation

Moscow



E. M. Slepenkova
Lomonosov Moscow State University
Russian Federation

Moscow



References

1. Videoreal’nost’ social’nyh media 2019: Brand Analytics. URL: https://br-analytics.ru/blog/video-in-social-media/ (data obrashhenija: 13.06.2019).

2. Koshik A. Veb-analitika 2.0 na praktike. Tonkosti i luchshie metodiki. — Vil’jams, 2014.

3. Porter M. Konkurentnaja strategija: Metodika analiza otraslej i konkurentov. — Al’pina Didzhital, 2016.

4. Porter M. Konkurentnoe preimushhestvo. Kak dostich’ vysokogo rezul’tata i obespechit’ ego ustojchivost’. — Al’pina Pablisher, 2019.

5. Ramasvami V., Prahalad K. K. Budushhee konkurencii. Sozdanie unikal’noj cennosti vmeste s potrebiteljami. — M.: Olimp-Biznes, 2006.

6. Rejting sistem monitoringa social’nyh media AdIndex «Technology Index 2018. URL: https://adindex.ru/rating3/tech/172078/index.phtml (data obrashhenija: 13.06.2019).

7. Sistema monitoringa social’nyh media i social’nyh setej: Youscan. URL: https://youscan.io/product/ (data obrashhenija: 13.06.2019).

8. Slepenkova E. M. Ispol’zovanie analiticheskih internet servisov v marketingovom analize // Marketingovyj analiz kompanij v rossijskom segmente interneta / pod red. E. M. Slepenkovoj. M., 2017. — S. 8–28.

9. Hulej G., Sonders D., Pirsi N. Marketingovaja strategija i konkurentnoe pozicionirovanie. — Dnepropetrovsk: Balans Biznes Buks, 2005.

10. Chen H., Chiang R.H. L., Storey V. C. Business intelligence and analytics: From big data to big impact // MIS Quarterly. — 2012. — Vol. 36. — No. 4. — P. 1165–1188.

11. Erickson G. S., Rothberg H. N. Intelligence in action: Strategicallymanaging knowledge assets. — London, England: Palgrave Macmillan, 2012.

12. Gerasimenko V. Value Creation through Digital Technologies in Product Development on Russian Telecommunication Markets. - Innovation Management, Entrepreneurship and Sustainability, Proceedings of the 7th International Conference, Department of Entrepreneurship Faculty of Business Administration University of Economics. — Prague, 2019. — С. 220–228.

13. Global digital future in focus 2019–2018 international edition, comScore. — P. 5, 8. URL: https://www.comscore.com/Insights/Presentations-and-Whitepapers/2018/Global-Digital-Future-in-Focus-2018 (дата обращения: 13.06.2019).

14. Gray K. (2016) Analytical Tools For Researchers and Data Scientists. URL: https://greenbookblog.org/2016/03/14/an-analytics-tookit/ (дата обращения: 12.06.2019).

15. Han S. P., Park S., Oh W. Mobile app analytics: A multiple discrete-continuous choice framework — Management Information Systems Quarterly (MISQ), 2015. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2676823

16. He W, Zha S, Li L. Social media competitive analysis and text mining: a case study in the pizza industry // International Journal of Information Management. — Vol. 33. — No. 3б. — P. 464–472.

17. He W., Wu H., Yan G., Akula V., Shen J. A novel social media competitive analytics framework with sentiment benchmarks // Information & Management. — November 2015. — Vol. 52. — Issue 7. — P. 801–812.

18. Heller J. How to unlock marketing-led growth: Data, creativity, and credibility The McKinsey Podcast, June 2019. URL: https://www.mckinsey.com/businessfunctions/marketing-and-sales/our-insights/how-to-unlock-marketing-ledgrowth-data-creativity-and-credibility?

19. Kaushik A. Web Analytics 2.0, The Art of Online Accountability and Science of Customer Centricity, 2009. URL: https://www.amazon.com/Avinash-Kaushik/e/B001JSCHP8/ref=dp_byline_cont_pop_book_1

20. Liang Guo, Ruchi Sharma, Lei Yin, Ruodan Lu, Ke Rong. Automated competitor analysis using big data analytics: Evidence from the fitness mobile app business // Business Process Management Journal. — 2017. — Vol. 23. — Issue: 3. — P. 735–762.

21. McDonald М. Marketing Plans. — Hugh Wilson, 2011. — P. 42.

22. Omiyale W. Big Data in a Post-Digital Age. URL: https://www.greenbook.org/images/GRIT/2017/GRIT2016-Q3-4.pdf

23. Pang B., Lee L., Vaithyanathan S. Thumbs up: sentiment classification using machine learning techniques. Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. — 2002. — Vol. 10. — Association for Computational Linguistics. — Philadelphia, PA. — P. 79–86.

24. Pemberton С. 8 Top Findings in Gartner CMO Spend Survey 2018-19. November 5, 2018. URL: https://www.gartner.com/smarterwithgartner/8-topfindings-in-gartner-cmo-spend-survey-2018-19/ (дата обращения: 18.08.2019).

25. Schwab K., Davis N., Nadella S. Shaping the Future of the Fourth Industrial Revolution: A Guide to Building a Better World. World Economic Forum, 2018.

26. The State of Mobile in 2019 — The Most Important Trends to Know. URL: https://www.appannie.com/ru/insights/market-data/the-state-of-mobile-2019/ (дата обращения: 13.06.2019).

27. Torres R., Sidorova A., Jones M. Enabling firm performance through business intelligence and analytics: A dynamic capability perspective // Information & Management. — 2018. — Vol. 55. — Issue 7. — November. — P. 822–839.

28. Van-Hau Trieu. Getting value from Business Intelligence systems: A review and research agenda Getting value from Business Intelligence systems: A review and research agenda // Decision Support Systems . — January 2017. — Vol. 93. — P. 111–124.

29. Waisberg D. Kaushik A. Web Analytics 2.0: Empowering Customer Centricity — Part II. 2009. URL: https://online-behavior.com/sites/default/files/web-analytics-ii.pdf — The original Search Engine Marketing Journal. — 2009 SEMJ.org. — Vol. 2 Issue 1. — No. 1. — P. 5–11.

30. Zajac E., Bazerman M. Blind spots in industry and competitor analysis: implicationsof interfirm (mis)perception to strategic decisions // Academy of Management Review. — 1001, Vol. 16. —No. 1. — P. 37–46.

31. Zikopoulos P, Parasuraman K, Deutsch T, Giles J, Corrigan D. Harness the power of big data: the IBM big data platform. — New York, NY: McGraw Hill Professional, 2012.


Review

For citations:


Gerasimenko V.V., Slepenkova E.M. Transformation of methods and tools of competitive analysis in the digital economy. Moscow University Economics Bulletin. 2019;(6):126-146. (In Russ.) https://doi.org/10.38050/013001052019610

Views: 284


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0130-0105 (Print)