Benchmarking study of prospective preferability of various investment patterns
https://doi.org/10.38050/01300105202024
Abstract
The article offers the evaluation of investment performance in stock markets, money markets, product markets and others. The comparison is based on the «Return-Risk» Model grounded on the fundamental principles of H. Markowitz’s portfolio analysis. The quantitative comparison is conducted on return-risk ratio as well as return-risk variability intervals. In the formed group of leaders, the return-risk ratio was minimal (0,12) for the money market, and maximal (0,43) for the US stock market. The patterns in focus were grouped as follows:
- High risk aversion: US branch analysis, currency index models, currency index models (sell) and intercontinental branch analysis.
- Medium risk aversion: US stock market, world stick indexes, precious metals market and exchange goods as a whole.
- Low risk aversion: Russia’s stock market.
The practical evaluation of «Return-Risk» Models received for various investment patterns proved their practical validity. The empirical estimators of investment horizons computed for various groups of investment tools are of practical use.
About the Authors
D. A. GertsekovichRussian Federation
Irkutsk
J. S. Caetano
Russian Federation
Irkutsk
O. S. Zmanovskaya
Russian Federation
Irkutsk
References
1. Appel’ D. Pobedit’ finansovyj rynok: Kak zarabatyvat’ kazhdyj kvartal. «Korotkie» investicionnye strategii / D. Appel’, M. Appel’; per. s angl. pod red. Borovkovoj. — SPb.: Piter, 2009. — 288 s.
2. Arnol’d G. Investirovanie. — M.: Delo i Servis, 2007. — 496 s.
3. Gercekovich D. A. Prognozirovanie riskov v razvitii hozjajstvujushhih sub#ektov rossijskoj jekonomiki v uslovijah kolebanija kursov mirovyh valjut / D. A. Gercekovich, O. L. Podlinjaev, T. M. Adamova // Problemy social’no-jekonomicheskogo razvitija Sibiri. — Bratsk: BrGU. — 2018. — № 3 (33). — S. 15–22.
4. Gercekovich D. A. Indeksnaja model’ «dohodnost’—risk» kak instrument formirovanija investicionnoj politiki na rynke valjut. / D. A. Gercekovich, E. V. Komandirova // Global’nye rynki i finansovyj inzhiniring. — 2018. — Tom 5. — № 2.
5. Gercekovich D. A. Vybor prioritetnyh napravlenij investirovanija na fondovyh rynkah po modeli «dohodnost’—risk» // Jekonomika i predprinimatel’stvo. — 2018. — № 9 (98). — 12. — S. 673–680.
6. Gercekovich D. A. Mnogourovnevaja integrirovannaja sistema formirovanija investicionnoj politiki predprijatija na osnove modeli «Dohodnost’—risk». / D. A. Gercekovich, V. S. Grigor’eva // Jekonomika i predprinimatel’stvo. — 2018. — Vol № 9 (98). — 12. — S. 954–958.
7. Gercekovich D. A. Analiz sostojanija i prognoz dinamiki otraslej SShA po modeli «Dohodnost’-risk». / D. A. Gercekovich, A. Lo // Izvestija vysshih uchebnyh zavedenij. Serija «jekonomika, finansy i upravlenie proizvodstvom» — Ivanovo: IGHTU. — 2018. — № 03(37). — S. 45–53.
8. Gercekovich D. A., Vladimirova N. V. Fondovyj rynok SShA: «Dohodnost’—risk» analiz i prognoz kursovoj dinamiki // Finansovaja jekonomika. — 2018. — № 7 (ch. 3). — S. 279–284.
9. Gercekovich D. A. Mezhkontinental’nyj otraslevoj analiz po modeli «dohodnost’—risk» / D. A. Gercekovich, O. V. Shapovalova // Finansovaja jekonomika. — 2018. — № 6 (ch. 8). — S. 947–953.
10. Grjem B. Razumnyj investor: Polnoe rukovodstvo po stoimostnomu investirovaniju / Per. s angl. 5-e izd. — M.: Al’pina Pablisher, 2018. — 568 s.
11. Damodoran A. Investicionnaja ocenka: Instrumenty i metody ocenki ljubyh aktivov. — M.: Al’pina, 2007. — 1340 s.
12. Zabolevaemost’ naselenija. Metodika rascheta i analiza pokazatelej zabolevaemosti [Jelektronnyj resurs]. URL: https://megalektsii.ru/s24493t2.html
13. Zajcev M. G. Metody optimizacii upravlenija i prinjatija reshenij: primery, zadachi, kejsy: ucheb. posobie / M. G. Zajcev, S. E. Varjuhin. — M.: Delo, 2007. — 664 s.
14. Kejsi M. Jepoha kriptovaljut. Kak bitkoin i blokchejn menjajut mirovoj jekonomicheskij porjadok / M. Kejsi, P. Vin’ja; per. s angl. Je. Kondukova. — M.: MIF, 2017. — 432 s.
15. Robbins T. Den’gi. Master igry / per. s angl. S.Je. Borich. 3-e izd. — Minsk: Popurri, 2017.—560 s.
16. Tapskott D. Tehnologija blokchejn: to, chto dvizhet finansovoj revoljuciej segodnja/
17. D. Tapskott, A. Tapskott; per. s angl. K. Shashkovoj, E. Rjahinoj. — M.: Jeksmo, 2018. — 448 s.
18. Uroven’ prestupnosti: ponjatie i sposob opredelenija [Jelektronnyj resurs]. URL: https://criminology-info.ru/index.php?action=full_article&id=78
19. Fabocci F. Dzh. Upravlenie investicijami. — M.: INFRA-M, 2000. — 932 s.
20. Fondy ETF na Moskovskoj Birzhe [Jelektronnyj resurs]. URL: https://www.moex.com/s221
21. Chasto zadavaemye voprosy o Bitcoin [Jelektronnyj resurs]. URL: https://bits.media/faq/#40
22. Sharp U. Investicii / U. Sharp, G. Aleksander, Dzh. Bjejli. — M.: INFRA-M, 2016. — 1040 s.
23. Bitcoin: A Peer-to-Peer Electronic Cash System [Электронный ресурс]. URL: https://bitcoin.org/bitcoin.pdf
24. Fama E. F. Permanent and temporary components. / E. F. Fama, K. R. French // Journal of Political Economy. — 1988. — Vol. 96. — Р. 246–273.
25. DeBondt W. F. Does the stock market overreact? / W. F. DeBondt, R. Thaler. // Journal of Finance. — 1985. — Vol. 40. — P. 793–805.
26. Jegadeesh N. Returns to buying winners and selling losers: Implications for stock market efficiency / N. Jegadeesh, S. Titman // Journal of Finance. — 1993. — Vol. 48(1). — P. 65—91.
27. Markovitz H. M. Portfolio selection // J. of Finance. — 1952. — Vol. 7. — № 1. — P. 77–91.
28. O`Shaughnessy J. What Works on Wall Street // McGraw-Hill. — XVI. — P. 273–295.
29. Tobin J. Liquidity Preference as Behavior Towards Risk // Review of Economic Studies. — 1958. — 26. — Nо. 1. — P. 65–86.
30. Tobin J. The Theory of Portfolio Selection / D. Tobin, F. H. Hahn, F. P. R. Brechling // Theory of Interest Rates. — London: MacMillan, 1965. — P. 3–51.
Review
For citations:
Gertsekovich D.A., Caetano J.S., Zmanovskaya O.S. Benchmarking study of prospective preferability of various investment patterns. Moscow University Economics Bulletin. 2020;(2):62-77. (In Russ.) https://doi.org/10.38050/01300105202024